
GeekOS: An Instructional Operating System for Real Hardware

David Hovemeyer
Department of Computer Science

University of Maryland
daveho@cs.umd.edu

December 10, 2001

Introduction

This paper describes GeekOS, a tiny operating system kernel which runs on real hardware
(x86-based PCs). GeekOS has been used as the basis for projects in an undergraduate
operating systems class at the University of Maryland. This paper discusses the motivation
for the creation of GeekOS, describes its design and implementation, and relates experiences
using it as an instructional operating system.

Most educators teaching operating systems use projects to help students understand the
issues and concepts. There are two basic approaches to developing operating system projects:

1. execute on bare hardware, directly exposing the hardware devices

2. execute within the user mode of a ‘host’ operating system, simulating the hardware-
level details

In this paper, I will present opinions arguing in favor of executing on bare hardware,
and (hopefully) back them up with real experience gained from GeekOS. One of the most
important factors in making the real hardware approach feasible is the availability of a
high quality PC hardware emulator[Boc01]. In this paper I hope to present evidence that
emulators offer many of the benefits of simulation while preserving the benefits of coding for
the bare metal.

Because its intended audience is educators and students, GeekOS is free software, and
may be downloaded from the GeekOS web site[Gee01]. This paper describes version 0.0.1a,
released on November 27, 2001.

The outline of the paper is as follows. First, I will go into more detail about the motivation
for GeekOS. Next, I will describe the design and implementation of GeekOS. I will then
discuss experience gained from using GeekOS as an instructional operating system. Finally,
I’ll describe ideas for future work, and present some conclusions.

1

1 Motivation

This section describes the motivations for creating GeekOS. In particular, it explains why I
started a new instructional operating system from scratch.

The first motivation was the desire to create a template for booting a program on a
bare x86 PC. Booting a program written a high-level language, even something as simple as
‘Hello world’, is an important first step in writing a new OS kernel. By putting together a
simple, well-documented example of how a kernel is bootstrapped, I thought I might assist
other aspiring kernel hackers. Due to the simplicity of GeekOS, it might also be useful for
embedded systems developers.

The second motivation was the desire to update the projects for the undergraduate oper-
ating system course at the University of Maryland. The projects were originally developed
in MS-DOS, using a 16 bit real mode compiler and assembler. While hosting the projects
from within MS-DOS allows direct access to hardware and memory (a desirable property),
it also leaves the host operating system vulnerable to being crashed by the projects. Also,
programming in MS-DOS exposes the dreaded Intel segment/offset address model. Finally,
students accustomed to editing and compiling from in a ‘real’ operating system such as Unix
or Windows NT are unlikely to find working within MS-DOS to be a pleasant experience.

GeekOS is a logical replacement for the original 16 bit projects because it remains true
to their spirit of programming close to the bare metal. Because x86 PCs are cheap1 and
readily available, and because high quality free development tools exist for them, they are a
natural choice for the host platform. In addition, an excellent free PC hardware emulator,
Bochs[Boc01], allows OS development to be done within a ‘virtual’ PC run as an ordinary
user process under a variety of popular operating systems. The availability of a high qual-
ity emulator was a deciding factor in the viability of writing an instructional OS for real
hardware, since it offers many of the advantages of simulation (debugging, isolation, etc.)
while preserving all of the benefits of coding for real hardware. The main disadvantage of
emulation is that it requires a fast CPU to get acceptable emulated performance. With PCs
being both extremely fast and cheap, this is not really an issue. A lab of low-end PCs2

running Windows or Linux would be more than adequate to allow students to develop their
projects using GeekOS and Bochs. In addition, because Bochs is an emulator, it runs on
non-x86 CPUs. Therefore, Unix workstations with suitable cross-development tools are also
a possibility.

2 Alternative Instructional OS Kernels

In this section I’ll explain why I found existing instructional operating systems unsatisfactory.

2.1 Nachos

One of the most widely-used instructional operating systems, Nachos [CPA93], runs as a
user-level process under Unix, and executes user programs via an instruction-level simulator

1I recently purchased a 90 MHz Pentium with 16 MB of RAM and a 500 MB hard drive for $13.
2My main development system for GeekOS is a 333 MHz Intel Celeron running Linux.

2

for a MIPS processor. The operating system code is written in C++ (which is compiled and
executed for the host Unix system), and the OS kernel executes ‘beside’ the CPU simulator.
The main advantage of this approach is that the operating system may be debugged using
the host system’s debugger, and a crash of the operating system only affects a single user
process. Another advantage to this approach is that it is friendly to timesharing; many
students may run their projects on a single computer. Finally, the operating system is
insulated from low-level hardware details; it may treat the system call interface of the host
operating system as its ‘hardware’.

I find the Nachos approach to be unsatisfactory for two reasons. The main reason, which
is partly aesthetic, is that Nachos destroys one of the elegant properties that, in my opinion,
makes operating systems so fascinating. In a ‘real’ operating system, the operating system
runs on the same CPU and hardware as the user programs. In Nachos, it does not, a fact
which may cause real confusion when students try to understand how a real operating system
separates the kernel from user processes. Another (lesser) objection is that Nachos abstracts
away chip and device level programming; this could be seen as an advantage, but I believe
that operating systems are a nice way to introduce students to the low-level organization of
real hardware. Finally, because of the unusual architecture of Nachos, it would be difficult
to port to run on bare hardware (where the OS kernel and user processes run on the same
CPU).

2.2 Minix

Minix[Min01, TW97] is another widely-used instructional operating system. Unlike Nachos,
it runs on real hardware. However, the goals of Minix are quite different from those of
GeekOS. Minix is a complete operating system which includes virtual memory, a filesystem,
device drivers, TCP/IP networking, and a full suite of user-mode programs. As such, it
comprises many tens of thousands of lines of source code. While well written and exten-
sively documented, it is nonetheless large and complex. This creates two problems from the
standpoint of teaching about operating systems. First, it is somewhat intimidating to dive
into such a large source base. Second, Minix already implements all important OS features,
making it somewhat difficult to design significant student projects. GeekOS, being at most
a rudimentary OS implementation, suffers neither of these problems.

3 Design and Implementation

This section discusses my design goals for GeekOS, and describes the current design and
implementation in some detail.

3.1 Design Goals

Three main goals influenced the design of GeekOS: simplicity, realism, and understandability.
As an instructional operating system kernel, keeping GeekOS simple was of paramount

importance. To this end, I tried to limit its features to those that I considered most funda-
mental. The following list summarizes GeekOS’s features:

3

• interrupt handling

• heap memory allocator

• time-sliced kernel threads with static-priority scheduling

• mutexes and condition variables for synchronization of kernel threads

• user mode with segmentation-based memory protection and a simple system call in-
terface

• device drivers for keyboard and VGA text mode display

Absent from this list are paged virtual memory, storage device drivers, and filesystem. I used
the x86’s segmentation mechanism to implement memory protection for user mode tasks.
Note that the user mode segments use a flat 32 bit memory model, avoiding the contortions
required by real mode segment/offset addressing. To work around the lack of disk storage
or filesystem, GeekOS includes a mechanism for compiling user programs as data objects
linked directly into the kernel. This technique could also be used to implement a RAM-based
filesystem.

3.2 Low-level Details

This section explores the design and implementation of GeekOS in more detail, and describes
some of the important data structures and functions.

3.2.1 Loading and Runtime Environment

GeekOS is booted from a floppy. The bootsector loads a 16 bit setup program and the
kernel image from the floppy into memory, and then jumps to the setup program. The setup
program initializes the hardware sufficiently to enter 32 bit protected mode, sets up the stack
of the initial kernel thread, and jumps to the Main() function, which is the kernel’s entry
point.

The Main() function calls the initialization functions for the various kernel subsystems,
and then starts user programs which are specified in a special data structure linked into the
kernel.

3.2.2 Memory

Because GeekOS does not use paging, all kernel code runs using physical addresses. Figure 1
shows how GeekOS and its data structures occupy physical memory.

The bootsector places the kernel at address 10000h (64K). The setup code and data is
placed at address 90000h; however, once the kernel’s Main() function is entered, the setup
program is not used again, and its memory is reclaimed.

After filling its .bss segment with zeroes and initializing the VGA text display, the kernel
builds the page list data structure. This is an array of Page structs, one for each page of
physical memory, and is allocated immediately after the kernel image. The Page struct is
defined as follows:

4

100000hA0000h90000h10000h

102000h

A D E F G H IC

memory

end of physical

BIOS data

Available pages

A

C

D

B,E

F

G

H

I

Kernel image

Page list

Setup code and data

ISA hole

Initial kernel thread object and stack

Kernel heap

Reserved

Available pages for freelist

Kernel image and data structrues

Kernel heap

B

1000h0

Figure 1: GeekOS memory map (not to scale).

#define PAGE_KERN 0x0001 // page used by kernel code or data

#define PAGE_HW 0x0002 // page used by hardware (e.g., ISA hole)

#define PAGE_ALLOCATED 0x0004 // page is allocated

#define PAGE_UNUSED 0x0008 // page is unused

#define PAGE_HEAP 0x0010 // page is in kernel heap

struct Page {

unsigned flags;

unsigned long nextFree;

};

The flags field indicates the current state of the page. The nextFree field is used for
the page freelist, which is a list of pages available to the page allocator. In the future, other
fields will be added to the Page struct to handle the association of pages with virtual memory
objects.

The page allocator, accessible through the Alloc Page() and Free Page() functions,
allocates pages of physical memory. Its pool of available pages consists of all pages below
A0000h except for page 0 (which contains BIOS data) and pages used by the kernel image
and the page list. The page allocator is currently only used for creation of Kernel Thread

objects and their stacks. When support for virtual memory is added to GeekOS, the page
allocator will be used as a source of physical pages to the virtual memory subsystem.

From A0000h to 100000h is the ISA hole, which is reserved for PC hardware devices such

5

as VGA memory. Currently the only part of this region used by GeekOS is the VGA text
screen, located at address B8000h.

Immediately following the ISA hole are two pages of memory for the initial kernel thread
and its stack. All remaining memory is used by the kernel heap allocator. The heap alloca-
tor, accessible through functions Malloc() and Free(), provides general purpose dynamic
allocation for objects of any size. I used a public domain library called BGET[BGE01] to
implement the heap allocator, since it was not dependent on any library and thus was easy
to incorporate into GeekOS. Currently, the heap allocator is only used for the allocation of
memory for user programs. When virtual memory is added to GeekOS, the kernel heap will
grow dynamically as needed rather than occupying a fixed region. It will also be implemented
on top of the page allocator, rather than being disjoint from it.

3.2.3 Kernel Threads

Kernel threads are the abstraction for a schedulable entity in GeekOS. I chose a threaded
model for GeekOS because it is simple to understand, and should be familiar to students
who have used user-level threads. A kernel thread may execute entirely in kernel mode, or
it may have a user context. The Kernel Thread struct is defined as follows:

struct Kernel_Thread {

unsigned long esp;

volatile unsigned long numTicks;

int priority;

DEFINE_LINK(Thread_Queue, Kernel_Thread);

void* stackPage;

struct User_Context* userContext;

struct Kernel_Thread* owner;

int refCount;

Boolean alive;

struct Mutex joinLock;

struct Condition joinCond;

};

The esp field is used to save the thread’s stack pointer when the thread is suspended.
Section 3.2.4 will describe context saving and restoring in more detail. The stackPage field
points to the kernel thread’s stack page. The numTicks and priority fields are used by the
scheduler to implement timer based preemption and priority-based scheduling, respectively.
The DEFINE LINK macro defines previous and next fields used when a kernel thread is on a
thread queue. The userContext field, if non-null, points to the thread’s user context, which
is essentially a combined code and data segment allowing the thread to execute a user mode
program. Section 3.2.6 will describe user contexts in more detail. The remaining fields are
used in the implementation of the Join() function, which allows a parent thread to wait for
a child thread to exit.

Figure 2 shows the prototypes for the functions which create and destroy kernel threads.

6

typedef void (*Thread_Start_Func)(unsigned long arg);

struct Kernel_Thread* Start_Kernel_Thread(Thread_Start_Func startFunc,

unsigned long arg, int priority, Boolean detached);

struct Kernel_Thread* Start_User_Thread(struct User_Context* userContext,

unsigned long entryAddr, Boolean detached);

void Exit(void);

Figure 2: Thread creation and destruction functions.

void Schedule(void);

void Yield(void);

void Wait(struct Thread_Queue* waitQueue);

void Wake_Up(struct Thread_Queue* waitQueue);

Figure 3: Voluntary thread scheduling functions.

Kernel threads may be created in two ways. Threads that execute exclusively in ker-
nel mode are created by the Start Kernel Thread() function, which takes a pointer to
a start function which implements the body of the thread. Threads executing user mode
programs are created with the Start User Thread() function, which takes a pointer to a
User Context and the address of the code entry point within the user context memory.

Kernel threads are destroyed when they voluntarily call the Exit() function. Because a
thread may be suspended while executing a critical section guarded by a mutex, GeekOS does
not provide a way for one thread to kill another, because there is currently no mechanism
for ensuring that mutex locks are released.

3.2.4 Interrupts and Scheduling

In GeekOS, a thread context switch may happen for two reasons.
First, a thread may voluntarily give up the CPU by calling the Yield() or Wait() func-

tions. In each of these functions, the current thread is placed on a thread queue and a new
thread is selected by calling the Schedule() function. The Yield() function places the call-
ing thread on the run queue, from which it may be rescheduled. The Wait() function places
the calling thread on a wait queue, where it will remain until another thread or interrupt
handler places it back on the run queue using the Wake Up() function. The voluntary thread
scheduling functions are shown in Figure 3.

Second, a thread may be preempted at any point where interrupts are enabled. The timer
interrupt handler increments the current thread’s numTicks field, and if it has exceeded its
time slice, it is suspended and a new thread is chosen.

7

struct Mutex;

struct Condition;

void Mutex_Lock(struct Mutex* mutex);

void Mutex_Unlock(struct Mutex* mutex);

void Cond_Wait(struct Condition* cond, struct Mutex* mutex);

void Cond_Signal(struct Condition* cond);

void Cond_Broadcast(struct Condition* cond);

Figure 4: Thread synchronization functions.

In an early version of GeekOS (which did not support timer based preemption), I used
an explicit data structure to store the suspended thread’s saved context for the voluntary
context switches. (‘Context’ refers to the thread’s current register contents and program
counter.) A separate mechanism was used to save and restore the executing thread’s context
on the stack when an interrupt occurred. This created two mechanisms for performing
essentially the same task. Therefore, I reimplemented the voluntarily thread scheduling
functions to save and restore the thread’s context on the stack using the same format as
the interrupt handling mechanism3. The Switch To Thread() function manipulates the
stack to make it appear that an interrupt has occurred in the thread being suspended. The
Restore Thread() function works the same way as the interrupt return code, and in fact
returns control to the restored thread using the iret instruction. By making the voluntary
thread scheduling functions compatible with the interrupt handling code, the interrupt return
code can switch to a new thread by simply saving the old thread’s stack pointer into the
Kernel Thread object’s esp field, switching to the new thread’s stack by loading its esp

field, and then executing a normal interrupt return.
By unifying interrupt handling and thread context switching, it was trivial to allow

interrupt handlers to notify the interrupt return code that a new thread should be chosen.
A global boolean variable, g needReschedule, is checked upon each return from an interrupt
handler. If set, the current thread is suspended and a new thread is chosen.

The current scheduler (the Get Next Runnable() function) uses a static priority scheme
to determine the next thread to run. Threads of equal priority will share the CPU in
round-robin fashion. A useful student project would be to implement an adaptive dynamic
scheduler to ensure that low priority threads are not starved by higher priority threads.

3.2.5 Thread Synchronization

In order to synchronize kernel threads, GeekOS provides mutexes and condition variables,
which are modeled on those provided by POSIX threads. Mutexes are used to mediate
exclusive access to data structures shared by multiple threads. Condition variables allow
threads to wait for a condition to be satisfied, or to signal that a condition has been satisfed.

3I read about this technique on the alt.os.development newsgroup, so I can’t take credit for it.

8

Prototypes of the thread synchronization functions are shown in Figure 4. These functions
are implemented using the lower-level Wait() and Wake Up() functions.

3.2.6 User Mode

Ultimately, the usefulness of any OS kernel lies in its ability to run other programs. It should
do so in a manner that protects the kernel from user programs and protects user programs
from each other. Therefore, a user mode for GeekOS was essential in order for it to be
realistic.

In order to get something running quickly, I used the x86 segmentation hardware to create
a restricted environment for user mode programs. User code may access and modify its own
data and make system calls, but all other OS resources are off limits. Any attempt by a user
program to access code or data outside its own sandbox results in a general protection fault
which kills the offending thread.

A user process is created by attaching a user context to a kernel thread. The User Context

struct is defined as follows:

struct User_Context {

struct Segment_Descriptor ldt[2];

struct Segment_Descriptor* ldtDescriptor;

void* memory;

unsigned long size;

int refCount;

unsigned short ldtSelector;

unsigned short csSelector;

unsigned short dsSelector;

};

The ldt field is a local descriptor table (LDT) in which the user context’s code and data
segments are defined. The ldtDescriptor field points to the LDT’s descriptor in the global
descriptor table (GDT). Each user context has its own LDT. By switching LDTs each time a
new user context is activated, GeekOS prevents user programs from accessing or modifying
memory other than their own. The memory and size fields define the memory containing
the context’s code and data. User programs use a single chunk of contiguous memory for
code, data, and stack. Because all loads, stores, and instruction fetches are done from the
user data and code segments, the user program thinks it is running in a flat memory space
beginning at address 0 and ending at address size.

User programs communicate with the kernel through a system call interface. A system call
is made by loading the system call number into the eax register, loading parameters into other
registers, and invoking software interrupt 144. The system call interrupt handler verifies
that a valid system call has been requested, enables interrupts, calls the handler function,
disables interrupts, and returns the result in the eax register. Copyin and copyout functions
are provided for moving data between user space and kernel space. Several demonstration
system calls, along with their user-mode wrappers, are provided as a model for students who
need to implement their own system calls.

9

GeekOS does not currently have storage device drivers or a filesystem. Therefore, it
provides a way to link user programs directly into the kernel as data objects. User executables
are first linked at base address 0. From each executable, a flat binary image is produced. A
perl script then converts the images into C data structures (called User Programs). These
data structures are collected into a table from which the kernel can look them up by name,
and then launch them with the Start User Program() function.

While the current user mode system was simple to implement and is easy to understand,
it has a number of shortcomings. First, because the user memory is fixed size, it would be
difficult to implement a user mode heap (using something like the Unix sbrk() system call).
We could play games such as placing the user program’s stack below its heap, but this is
not an elegant solution. Another problem is that because gcc (the compiler used to compile
GeekOS) does not support segmented memory, it would be difficult to implement shared
libraries or shared memory. Finally, there is no way to trap null pointer dereferences using
segmentation.

I hope to add support for paged virtual memory to the next version of GeekOS. Some
thought will need to be given to how virtual memory can be implemented in a way that
preserves GeekOS’s simplicity, which I consider to be an essential property in its role as an
instructional OS kernel.

3.2.7 GeekOS Source Code

The source code to GeekOS currently consists of about 3,500 lines of C4 and about 1,000
lines of assembly. Of these totals, about 1,600 lines are comments or blank.

I made a conscious effort to write GeekOS in a way that would allow the source code to
be understood easily. In addition to liberally commenting the source code, I took pains to
avoid the use of cryptic identifiers or idioms5. From comments I’ve received from visitors to
the GeekOS web site, I think I’ve suceeded in making the code readable.

4 GeekOS as an Instructional Operating System

GeekOS was used as the basis for student projects in the Fall 2001 undergraduate operat-
ing systems course (CMSC 412) at the University of Maryland. Several possibilities were
suggested to the students, who were allowed to choose among them:

• implement a slab memory allocator[Bon94]

• implement multi-level and round-robin scheduling algorithms

• implement adaptive mutexes

• implement fork() and exec() system calls

4This figure does not include the kernel heap memory allocator.
5Operating systems hackers have a well-deserved reputation for coding in an intentionally obscure style,

as though the mark of a good programmer was the incomprehensibility of his or her code.

10

• implement IPC using unidirectional pipes

In addition, some students choose their own projects, which included implementing paged
virtual memory, implementing an IDE device driver, and implementing an ethernet device
driver.

In order to gauge the effectiveness of GeekOS as an instructional operating system, I
distributed a survey to the students. The survey asked them to describe their experiences
working with GeekOS and the Bochs emulator. In particular, I wanted to answer three main
questions. First, was working at the level of bare hardware useful, or was it an unnecessary
source of complications? Second, was working with Bochs straightforward, or was it too
complex or slow? Third, did GeekOS itself help reinforce the concepts taught in the class?

On the whole, the students’ responses were positive. Out of 25 completed surveys,
only one student felt that GeekOS was not easy to understand (14 found it ‘somewhat’
easy to understand, and 10 responded with an unqualified ‘yes’). When asked whether
GeekOS helped them understand the concepts taught in the course, 15 students answered
‘somewhat’, and 10 answered ‘yes’. Most of the students (18) responded ‘yes’ when asked
whether they found it interesting or useful that their projects were capable of running on
bare hardware, while 5 answered ‘somewhat’ and 2 answered ‘no’. I conclude that GeekOS
was thus reasonably effective as an instructional OS kernel, and that the decision to work at
the hardware level was justified.

Before the students started working with GeekOS, I was concerned that the performance
of Bochs and the cross-development environment set up on the academic computing cluster
might not be adequate, since the cluster is heavily loaded. I was therefore relieved to find
out that most students did their projects on their own machines (largely using Windows,
with a few students using Linux). The three students who did develop their projects on
the cluster found that the performance was adequate. From these responses I conclude that
using Bochs in an academic setting is entirely feasible, even when some students are using a
time-shared system.

I was pleasantly surprised to find that most students found Bochs to be easy (11) or
somewhat easy (11) to work with. Only 3 did not find Bochs to be easy to work with. This
is confirmation that Bochs is well-designed and reliable, which has been my experience in
my own work with it. However, most students (20) did not use the built-in debugger.

Finally, the survey asked whether the students thought GeekOS was a good basis for
the course projects. 19 answered ‘yes’, 5 answered ‘somewhat’, and 1 answered ‘no’. The
survey also solicited general comments on GeekOS in its role as an instructional tool. Two
students said that they would have liked more pointers on where to go for hardware-level
programming information. Two students felt that GeekOS was not well integrated into the
course cirriculum, and would have preferred to use it earlier in the semester. One student
would have liked to have comprehensive reference documentation on GeekOS internals (since
currently the only such documentation is comments in the source code).

From the student feedback, I think GeekOS was largely effective in its role as an instruc-
tional OS. However, there are many ways in which it could be improved. I think detailed
reference documentation with pointers to hardware programming information would be ex-
tremely useful, both for students and for teaching assistants. In addition, in future semesters

11

I think it will be possible to integrate GeekOS more smoothly into the cirriculum for the
course, using the experience gained this semester.

5 Future Work

To make GeekOS a more effective educational tool, comprehensive reference documentation
needs to be written. Because x86 PCs (as emulated by Bochs) are quite easy to program,
and because GeekOS is a fairly simple piece of software, I think good documentation could
be put together pretty easily.

One of the most difficult problems encountered in hardware-level programming is the
difficulty of getting good diagnostic information when errors occur. Bochs includes a built-
in assembly level debugger. However, since GeekOS is written in C, stepping through the
assembly code emitted by the compiler is not especially helpful. It would be very nice to
add support for source-level debugging to the Bochs debugger. I think this would greatly
reduce the burden on students to understand complex hardware issues, and this help fulfill
the promise of hardware emulation as a pedagogical vehicle.

In addition to improving the suitability of GeekOS as an instructional tool, I plan to
continue its development as an OS kernel. The most urgent feature needed by GeekOS is
support for paged virtual memory. This would allow much more flexible control over the
memory layout of user mode processes. For example, dynamic expansion of the heap and
user stack(s) would be much simpler to implement with paging than with segmentation. In
addition, support for shared memory regions would become possible. However, paging is
significantly more complex than segmentation, so finding a way to support paging without
greatly increasing the complexity of GeekOS will be an interesting challenge.

Device drivers such as disk and ethernet could be useful, since they would make it easier
for students to create filesystems and network stacks as projects. However, these are also
interesting as projects in their own right, so incorporating them into the base system might
not be desirable.

GeekOS currently does not have any mechanism for interprocess communication or re-
source naming. While I have some ideas on the drawing board, I think they are too complex
and specific to incorporate into the base system. Since these are also good possibilities for
student projects, I think leaving them out is preferable.

I think it is likely that GeekOS will split into two branches. The ‘classic’ system will
just add paging to the current code base. The ‘experimental’ system will incorporate new
drivers and subsystems, and possibly ports to other architectures, and thus be less suited for
instructional use. Ultimately, I would like to develop the experimental version of GeekOS to
the point where it can self-host its own development; obviously this goal is relatively far off.

6 Conclusions

I think the experience with GeekOS has shown that programming for bare hardware is an
effective way to teach operating system principles. I have received several comments, from
students as well as visitors to the GeekOS web site, that GeekOS has helped them understand

12

OS programming, and in this way it has satisified my original goals. I think with further
refinement it can become even better as an educational tool.

Acknowledgements

First, I would like thank Bobby Bhattacharjee for founding the University of Maryland’s OS
reading group, which spurred my interest in operating systems and lead to the creation of
GeekOS. He also decided to use GeekOS for the undergraduate operating systems course
(CMSC 412), which resulted in this paper. I would like to thank the students of CMSC
412 for their feedback on GeekOS. The members of the alt.os.development community,
in addition to providing many good ideas, answered several questions I had during the
development of GeekOS.

References

[BGE01] The BGET Memory Allocator, http://www.fourmilab.ch/bget, 2001.

[Boc01] Bochs, the Cross-Platform IA-32 Emulator, http://bochs.sourceforge.net, 2001.

[Bon94] Jeff Bonwick. The Slab Allocator: An Object-Caching Kernel Memory Allocator.
In Proceedings of the USENIX Summer Technical Conference, pages 87–98, 1994.

[CPA93] Wayne A. Christopher, Steven J. Proctor, and Thomas E. Anderson. The Na-
chos Instructional Operating System. Technical Report CSD-93-739, University of
California, Berkeley, Computer Science Division, 1993.

[Gee01] GeekOS web site, http://geekos.sourceforge.net, 2001.

[Min01] Minix Information Sheet, http://www.cs.vu.nl/˜ast/minix.html, 2001.

[TW97] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems: Design and
Implementation. Prentice-Hall, second edition, 1997.

13

